skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chew, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The emergence of generative artificial intelligence (GAI) has started to introduce a fundamental reexamination of established teaching methods. These GAI systems offer a chance for both educators and students to reevaluate their academic endeavors. Reevaluation of current practices is particularly pertinent in assessment within engineering instruction, where advanced generative text algorithms are proficient in addressing intricate challenges like those found in engineering courses. While this juncture presents a moment to revisit general assessment methods, the actual response of faculty to the incorporation of GAI in their evaluative techniques remains unclear. To investigate this, we have initiated a study delving into the mental constructs that engineering faculty hold about evaluation, focusing on their evolving attitudes and responses to GAI, as reported in the Fall of 2023. Adopting a long-term data-gathering strategy, we conducted a series of surveys, interviews, and recordings targeting the evaluative decision-making processes of a varied group of engineering educators across the United States. This paper presents the data collection process, our participants’ demographics, our data analysis plan, and initial findings based on the participants’ backgrounds, followed by our future work and potential implications. The analysis of the collected data will utilize qualitative thematic analysis in the next step of our study. Once we complete our study, we believe our findings will sketch the early stages of this emerging paradigm shift in the assessment of undergraduate engineering education, offering a novel perspective on the discourse surrounding evaluation strategies in the field. These insights are vital for stakeholders such as policymakers, educational leaders, and instructors, as they have significant ramifications for policy development, curriculum planning, and the broader dialogue on integrating GAI into educational evaluation. 
    more » « less
  2. This full research paper documents assessment definitions from engineering faculty members, mainly from Research 1 universities. Assessments are essential components of the engineering learning environment, and how engineering faculty make decisions about assessments in their classroom is a relatively understudied topic in engineering education research. Exploring how engineering faculty think and implement assessments through the mental model framework can help address this research gap. The research documented in this paper focuses on analyzing data from an informational questionnaire that is part of a larger study to understand how the participants define assessments through methods inspired by mixed method strategies. These strategies include descriptive statistics on demographic findings and Natural Language Processing (NLP) and coding on the open-ended response question asking the participants to define assessments, which yielded cluster themes that characterize the definitions. Findings show that while many participants defined assessments in relation to measuring student learning, other substantial aspects include benchmarking, assessing student ability and competence, and formal evaluation for quality. These findings serve as foundational knowledge toward deeper exploration and understanding of assessment mental models of engineering faculty that can begin to address the aforementioned research gap on faculty assessment decisions in classrooms. 
    more » « less